Decadal variations in atmospheric water vapor time series estimated using ground-based GNSS

نویسندگان

  • Fadwa Alshawaf
  • Galina Dick
  • Stefan Heise
  • Tzvetan Simeonov
  • Sibylle Vey
  • Torsten Schmidt
  • Jens Wickert
چکیده

Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we use time series from GNSS, European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data, and meteorological measurements to evaluate climate evolution in Central Europe. The assessment of climate change 5 requires monitoring of different atmospheric variables such as temperature, PWV, precipitation, and snow cover. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates with that estimated from the other data sets. The linear 10 trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using meteorological measurements. The results show a positive trend in the PWV time series at more than 60 GNSS sites with an increase of 0.3–0.6 mm/decade. In this paper, we compare the results of three stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations

Three-dimensional water vapor can be reconstructed from Global Navigation Satellite System (GNSS) observations, which can study 3-D profile variations of atmospheric water vapor and climate. However, there is a large uncertainty of water vapor tomography from single GPS system observations due to limited satellites. The rapid development of multi-GNSS, including China’s Beidou Navigation Satell...

متن کامل

Comparison of shipborne GNSS-derived precipitable water vapor with radiosonde in the western North Pacific and in the seas adjacent to Japan

We installed two global navigation satellite system (GNSS) antennas on a research vessel, the RYOFU MARU of the Japan Meteorological Agency, and conducted experimental observations to assess the GNSS-derived precipitable water vapor (PWV) from October 19, 2016, to August 6, 2017. One antenna was set on the mast (MAST), while another antenna was set on the upper deck (DECK). The GNSS analysis wa...

متن کامل

Mitigation of Tropospheric Delay on InSAR Interseismic Displacements

One of the major challenges of Interferometric Synthetic Aperture Radar (InSAR) technique is the existence of tropospheric effect on the results. The tropospheric effect is due to the changes of atmospheric parameters including temperature, pressure, and humidity between the master and slave images. In this research, two different methods based on spatial-temporal filters and calculation of pha...

متن کامل

Development and Calibration of a K-band Ground-based Hyperspectral Microwave Ra- Diometer for Water Vapor Measurements

In this paper, a K-band ground-based hyperspectral microwave radiometer for atmospheric sounding is proposed, which improves the profile error and vertical resolution of moisture profiling under the high water vapor condition. The hyperspectral microwave radiometer (80 K-band spectral channels) can observe the rapidly changing weather with high sensitivity and accuracy of brightness temperature...

متن کامل

Investigation of Short Time Scale Variation of Solar Radiation Spectrum in UV, PAR, and NIR Bands due to Atmospheric Aerosol and Water Vapor

Long terms variation of solar insolation had been widely studied. However, its parallel observations in short time scale is rather lacking. This paper aims to investigate the short time scale evolution of solar radiation spectrum (UV, PAR, and NIR bands) due to atmospheric aerosols and water vapors. A total of 25 days of global and diffused solar spectrum ranges from air mass 2 to 6 were collec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016